COMPUTER FROGRAMMS IN °C’

' ASSIGNMENT PROBLEM iN C

* SOLVE AN ASSIGNMENT PROBLEM BY THE HUNGARIAN METHOD */

/k AAAAAAI\AAAAAAAAAI\AAAAAAAAAAAAAAAAAAAAAAI\AAAAAAAAAAA *,

#include <stdio.h>
#include <conio.h>
“#include <math.h>
#include <float.h>
#include <graphics.h>

#define MAX 7
#dcfine YES 1
#define NO 0
#define M 10000;

typedef int array[MAX]|MAX];
typedef int listf MAX];

void validity (void);

void screen (void);

void clear {void);

void outline (veid);

void draw {void);

void accept (void);

void display (void);

void hungarian (veid);
void solution (void);

void accept_el (void);
void modify (void);
vaid fill (void);

void reduce_first {void);
void reduce_again (void);
void assign (veid);

void lines (void);
void check (void};

void copy {void);

void check_one (void};
void problem (void);
void algorithm (veid);
void preblem_max_min(void);
void input_jobs (void);
void input_machines(void);

char ch,chi;
'f*
int i,j.k LLmmn,rc row3, col, count, asgn_count, cost, index;

94

. COMPUTER PROGRAMMS iN ‘C’

int valid, min, flag, opt_flag, taken_flag; ‘
int mchn, job, d_job, d_mchn, r_count, ¢_count, row3_zero, col_zero ;
array value,temp, asgn, delete, templ;

list r_index, c_index;*/

int i, j, k,1, m, n, r, ¢, row, col, count, asgn_count, cost, index;

int valid, min, flag, opt_flag, taken_flag; -

int mchn, job,d_job, d_mchn, r_count, ¢_count, row_zero, col_zero ;
array value, temp, asgn, delete, templ;

list r_index, ¢_index;

void main()
{
{f problem();
1 algorithm();
ch="y';
while ((ch =="'y") || (ch =="'Y"))
{ ,

screen();
accepi();
check();
copy();
if (flag)
display();
modify(};
if (flag)
display();

asgn_count = 0;
reduce_first();
display(};
hungarian();
solution(};
gotoxy(2,24);
clreol();
gotoxy(79,24);
printf{"'%e¢",186);

- gotoxy(2,24);
printf("" Do you want to continue with another problem ? fyv/nf™);
ch = getche();
'

clrser();

return;

'

void screen()

{

COMPUTER PROGRAMMS IN ‘T’

clrser();
gotoxy(1,1);
printf(* %c",201);
for(i=2;i<80;i++)
{
gotoxy(i, 1);
printf(" %c',205);
gotoxy(i, §);
printf(*'%c",205);
potoxy(i, 25);
printf('' Yac",205);
! .
gotoxy(79,1);
printf(" %c",187);
gotoxy(10,3);
printf("* TO SOLVE AN ASSIGNMENT PROBLEM BY THE HUNGARIAN
METHODn");
gotoxy(10,4);
printf("
f_\AAAAAAAAAAAI\AAAAI\I\AAAAAAAAA/\AAI\AI\AAAAAAAAI\AAAAAAAAAAA\H ");
gotoxy(1,5);
printf(" %c",204);
gotoxy(79,5);
printf("' %c",185);
for(i=2;i<25;it+)
{
gotoxy(1,i);
printf('*%c",186);
gotoxy(79,i);
printf("%c",186);
}
gotoxy(1,23);
printf(*' %", 200);
gotoxy(79,25);
printf("%c",188);
}

void ciear()
{
gotoxy(2,24);
printf(’ Press any key to continue....”);
geteh();
}

95

9 COMPUTER PROGRAMMS IN ‘C’

void accept() /* Accept all criteria of*/
/* the problem *f
problem_max_min();
screen();
input_jobs();

input_machines();
f{ input_machines();

d_mchn = {; /* In the case of an unbalanced */
d_job =0; f* problem, if the no. of jobs */
if (job != mchn) * is greater than the no. of */
if { mchn > job) /* machines else create dummy */
d_job = mchn - job; * jobs */
else

d_mchn = job - mchn;
for (i=0;i<MAX;i++)
for (j=0;j<MAX; j++)
valuefi][j] = 0;
screen();
draw();
gotoxy(25, 6); printi{"MACHINES");
gotoxy(19,10); printf("J");
gotoxy(19,11); printf("O");
gotoxy{19,12); printf(''B");

if(job>2)
{
gotoxy(19,13);
printf(flsll);
}
accept_el();
H
void validity() [* :l‘o check if the <enter>, <tab> */
{ /* <backspace> or the <esc> key */
int key; - * was pressed before entering any*/
do * value was entered *f

{ .
key = bioskey(1); _
if ((key == 283) || (key == 7181} || (key == 19712) I (key = 19200))
{
key = hioskey(0);
key = 0;
y o
H

COMPUTER PROGRAMMS IN ‘C’

“while (key == 0);
}

void outline()
{

. col=0;
for{i=0;i<4;itt)

{
gotoxy(20 + i,7);
printf(" %c",205);
row =9 + job*2;
gotoxy(20 + i,row);
printf(" %c",205);
gotoxy(20 +i9)y;
printf(" %c",196);
} ‘

for (i=0;i<mchn ;i++)
for (j=0;j<5;j+t)

col++;
gotoxy(24 + col,7);

_ printf("%c",205);
row =9 + job*2;
gotoxy(24 + col,row);
printf("' %c",205);
gotoxy(24 + col,9);
printf(" %c",196);-

for(i=0;i<2;it+)

{
gotoxy(20,7+i);
printf(" %c",186);
col = 24 + mchn*S;
gotoxy(col,7-+i);
printf(" %c"186);
gotoxy(24,7+i);
printf("%c",179);
} .
row =;
for(i=0;i<job;it+t+)
for(j=0;j<23j++)

row++;

gotoxy(20,9+row);

printf("%e",186);
- col = 24 + mchn*5;

COMPUTER PROGRAMMS IN ‘C’

gotoxy(col,9+row);

printf(" %c",186);

gotoxy(24,9+row);

printf(" %c",179);

}
gotoxy(20,7); printf(" %c",201);
col = 24 + mchn*5;
gotoxy(col7); printf("%c",187);
row =9+ job*2;
gotoxy(col,row); printf("'%c",188);
gotoxy(20,row); printf(" %c",200);
gotoxy(24,7); printf(" %c",209);
gotoxy(24,row); printf("'%c",207);

gotoxy(20,9); printf(" %c",199);
gotoxy(col,9); printf("%c",182);
gotoxy(24,9); printf("%¢",197);
gotoxy(10,15); printf("JOBS");
gotoxy(30,6); printf("MACHINES");
}

void draw() /* Draw the table * -
{
outline();
col = 24; _
for (i=0;i<mchn-1;i++)
{ .
row =9;
col =col +5;
_ gotoxy(col,row);

printf(" %c",194);

for (j=0;j<job;j++)
for (k=0;k<2;k++)

{ .
row++;
gotoxy(col,row);
printf{"%c",179);
}

gotoxy(col,row);

printf{" %c",207);

} R .

row=9;

for (i=0;i<job:l ; i++)

col =24;

COMPUTER PROGRAMMS IN ‘C’

row = row + 2;
gotoxy(col,row); -
printf(" %c",195);
for (j=0;j<mchn;j++)
{
for(k=0;k<5; kt++)
I
col++;
gotaxy(col,row);
printf(" %c",196);
}
gotoxy(col,row);
printf("%c",197);
}
gotoxy(col,row);
printf(" %c",182);
}
col =21;
for (i=0;i<mchn;i++)
{
col = col + 5;
gotoxy(col, 8);
printf{("%d",i+1);
i

row =8;

for (i=0;i<job;i++)
{
row = row + 2;
‘gotoxy(22, row);
printf("%d" i+1);
}
}

void accept_el() '

{
gotoxy(2,24);

printf(" Eater all the pre-assigned costs in the cbrrcsponding cells.™);

row =§;

for (i=0;i<job;i++)

{

row = row + 2;

col = 20;

for (j=0;j<mchn; j++)
{

col=col + 5;

100 R COMPUTER PROGRAMMS IN ‘C’

gotoxy(col,row);
validity();
scanf(" %d" Svaluefi}[j]);
)

-}

)

void check() /* If the objective is to maximise*/
{ ' /* negate all the values in the */
flag = 0; _ /* table and proceed *f
if ((chl ='a"} |l (chl =="A"))
f .
flag=1;
for(i=0;i<job;i+t+)
for (j=90; j <mchn; j++)
{
templil[] = value[i][j];
value[i][j] = -valueli]{j);

)
}
}
void copy() /* Store the original table */
{

for (i=0;i<job;i+t+)
for (j=0;j <mchn; j++)
templ[i]j] = value[i}(j];

void modify() _ /* If the problem is unbalanced */
{ {* add dummy row33s or dummy col3umns */
flag = 0; ’ :
if ((d_mchn !=0) || (d_job!=0))
flag=1; '

mchn = mchn + d_mchn;
- job =job +d_job;

H
void display()

{

screen();

draw();

fill);
}

void fill()

COMPUTER PROGRAMMS IN ‘C”

{
row = §8;
for (i=0;i<job; i++)

{

row = row +2;

col = 20;
for(j=0;j<mchn; j+t+)

col =col +5;
gotoxy(col,row); -
printf(" %d" templil(i]);
}
}
if (asgn_count !=90)

{

for (j=0;j<r_count; i)

i=r_index|j};
row = 10 + (2*i);
gotoxy(19, row);
printf(" %c",16);
col =25 + (5 * mchn); ~
gotoxy(col, row);
printf("%e",17);
} .

for (j=0; j<c_count ; j+)
i=c_index|j];
col = 25 + (5*i);
gotoxy(col, 6);
printf(" %c" ,31);
row = 10 + (2 * job);
gotoxy(col, row};
printf("%e"",30);
)

}
gotoxy(2,24);

printf("Press any key to continue...."");

getch();
}

void hungarian()
{
assign();
while { asgn_count != job)

{

I* Assign jobs to the */
/* machines. If not optimal */

101

102

COMPUTER PROGRAMMS IN '

lines(); /* cross out all zeroes */

display(); /* with the minimum no. of lines */
reduce_again(); /* Find the minimum of all the */
assign(); /* uncrossed elements & subtract*/
4 /* it from all the uncrossed */

}

/* at the intersection of the lines*/

void reduce_first() /* Done in the first iteration */
{ /* Find the minimum of each row3 */
for(i=0;i<jeb;itt) /* Subtract it from all the cle- */
4 {* ments of that rew3 . Similarly */
min = M; /* for col3umn */

for (j=0;j<mchn; j++)

{ .
if (templi}[j] < min)
min = templ[i][j);

for (j=0; j <mchn; j++)
templi][j] = templi){j] - min:

for (i=0;i<mchn;itt+)
{ ,

min = M; _
for(j=0;]j<job; j++)

{
if { templj}[i] < min)
min = temp[j}[i];
}
for(j=0;j<job; j+t+)
templj] i} = templj](i] - min;

)
void reduce_again() /* Find the minimum of */

{ /* all uncrossed elements */

min = M; /* and subtract it from the */

for{i=0;i<job; i++) /* rest of the uncrossed clements */
{
flag = 0;
index=1;

for (k=0;k <r_count; k++)
if (index == r_indexjk])
flag=1;
if (Mlag)

COMPUTER PROGRAMMS IN ‘C’

{
for (j=0; j<mchn; j++)
{
flag = 0;
index = j;
for (k=0;k <c_count ; k++)
if (index == c_index([k})
flag=1;
if (!flag)

{
if (tempfi][j] < min)
min = templ[i]{jl;
H
H
}
}

for(i=0;i<job;i+t)
{ -
flag=10;
index=1i;
for (k=0; k<r_count; k++)
if (index == r_index]k])
flag=1;
if(Mag) .
{ ;
for (j=0;j<mchn; j++)
{ .
flag = 0;
index = j;
for (k=0;k <c_count; kit+)
if (index == c_indexfk])
flag = 1;
if (flag)
templi](j] = templi][i] - min;

}
}

for (i=0;i<r_count;it+)

I = r_index[i};
for (j=0;j<c_count; j+)

m = ¢_index[j];
templ[l][m] = temp([t}[m] + min;

103

104 ' COMPUTER PROGRAMMS IN ‘C’

}
}

void assign()
{ :

for(r=0;r<job;r++)
for (¢=0;c<mchn;ct+)

{
asgo[r][c] =-1; .
templ[r][c] = tempfr][c];
}
asgn_count = 0; _
for(r=0;r<job;rt+)
“for (e=0;c<mchn;ct+)
{
check_one();
if (templ[r]{c] ==0)

{

asgn(r]e] = ;

asgn_count++;

for(1=0;1<job;1+t)

- if(tempfij[c] =0)

templ{l)(c] = M;

for (m=0; m < mchn ; m++)

if (templ1[r]fm] = 0)

templ|r]{m] =M;

}

}
}

void check_one()

{
-for{k=0; k<job; ki++)

{ .
for(i=0;i<job;i+t)
{

count = 0;

for (j=0;j<mchn; j+H)
~if{{ templ{illil =0)
col=j;
count++;

_ }
if (count==1)

{ .
asgnli]|cel] = 0;

COMPUTER PROGRAMMS IN 'C’

105

asgn_count++;
for (1=0;1<job;++)
if ((temp[l]{col} == 0) && (asgn|l][col] 1=0))
templ{l][col] = m;
for {1=0;1<mchn;H+)
if (temp1{i}[l]] == 0)
temp1[i][l] = M;

!
for (i=0;i<mchn;i++)
{
count = 0;

for (j=0;j<job;jt+)

if (temp1[j][il == 0)
{
row =j;
count++;

- if { count =_=.l)

}
}
}

asgn[row][i] = 0;

asgn_count++;

for (1=0;1<mchn; H+)
if (temp[row][l] = 0)
templirow}{l] = M;
for(m=0; m < job; m++)
if { templ[m][i] == 0)
templ{m}[i] = 0;
y

void lines()

{

for (i=0;i<job;it+)
for(j=0;j<mchn; jt+)
templ [ij{j] = templillil;
r_count =0;
c_count = 0;

for (i=0;i<job;it+t+)
for (j=0;j<mchn; j++)

{
if (asgnlil[il == 0)

{

106

COMPUTER PROGRAMMS IN ‘C’

row_zero =10;
col zero=1; .
l‘or(l=0;l<job;l+.+)
if (temp1[1][jl==0)
col_zero++;
for (1=0;1<mchn;++)
if (templi]iJ{l] =0)
row_zerot+;
if (row_zero > col_zero)

r_index|r_count] = i;
r_count++;
for (1=0;1<mchn; l++)
if (templ[i][1] ==0)
templ{i][l] = M;
}

else

¢_index|[c_count] = j;
c_countt+;
for(1=0;1<job;H+)
if (templi}(j] =0)
templ{lj[jj = M;
}

i mclhn -1;
H
!

for(i=job;i>0;i-)
{
for (j=0;j<job;j+t+)
{
count = 0);
for (k=0; k'<mchn; k++)
if (templ(j][k]==10)
count++;
if (count==1i)

r_index{r_count] = j;
r_count+t;
for ([=0;1<mchn;++)
if (templ [j)[1] ==0)
templ[j]{l] = M;
}
' .

for (j=0;j<mchn;j++)

COMPUTER PROGRAMMS IN 'C’ 107

{
count = 0;
for (k=0 k <job; k++)
if (templ(Kk][j] ==0)
count++;

if(count#i)

c_index[c_count] = j;
c_count++;
for (1=0;1<job; H++)
if (temp1[1}{j] == 0)-
templ[1][j] = M;
}
}
Y
}

void solution(}
{
lines();
display();
screen();
gotoxy(3,6);
printf("* Solution : "');
gotoxy(3,8);
printf(" The assignment can be done as follows. ");
row=9;
col=5; ' :
for (i=0;i<(job-d_job);i++)
for (j =03 j < (mchn - d_mchn) ; j++9)
if (asgnfi]ljl =10)
{
row++;
gotoxy(col,row);
printf(” job %d can be assigned to machine %d."i+1,j+1);
1
cost=0;
for (i=0;i<job;itt)
for (j=0;j<mchn; j+t)
if (asgnlillj]==0)
cost = cost + value[i}[j;
row = row +2;
gotoxy(col,row);
it ((chl =="i"}|| {ch1 =="F"))
printf("’ The minimal cost of the entirc operation is estimated as %d." ,cost);

COMPUTER PROGRAMMS IN ‘C’

clse
{
Cost = -cost;
printf(*" The maximal cost of the entire opcration is estimated as %od.", cost);

i

}
void problem_max_min()
1 .
gotoxy(3,6); ‘
printf(** Is the assignment problem a "):
gotoxy(5,8);
printf(" A> Maximization problem ");
gotoxy(5,9);
printf(" I> Minimization problem ");
gotoxy(3,11);
printf(" (Press 'a’ for a maximization problem ");
gotoxy(3,12);
printf(” and ‘i’ for a minimization one R H
_valid = NO:
while { valid I= YES)
{

gotoxy(45, 12); .
chl = getche(); :
if ((chl=="a") || (chl =="i") || (chl == 'A") || (chl =="'1"))

valid = YES;
else

{

gotoxy(2,24);)
printf{(" Wrong key ! Press the right one <'a’ or 'i' >");
))

)
}

void input_jobs()
{

valid = NO;

while (valid != YES)

{

gotoxy(3,6);

printf(" Number of jobs (rows) : ");
gotoxy(2,24);

printf(" Number of jobs cannet be > 71 ");
gotoxy(40,6); -

validity();

scanf(" %d" ,&job);

COMFPUTER PROGRAMMS IN ‘C’ 109

if ((job>0) && (job<=7))
éor(i=2;i<60;i++)
{ gotoxy(i,24);
printf(" ");
;ralid = YES;

else
{
row = 6;
col = 40;
for(i=0;i<10;i++)
{
gotoxy(col+i,row);
printf(" ﬂ);
)
}
}
)

void input_machines()

{
valid = NO;
while (valid != YES)
{
gotoxy(3,8);
printf("" Number of machines (columns): *);
gotoxy(2,24);
printf(" Number of machines cannot be > 7! ");
gotoxy(40,8);
validity(};

scanf("'%d" ,&mchn);
if { (mchn > 0) && (mchn <=7)

{ : .
for(i=2;i<60;i++)
{
gotoxy(i,24);
printf(" '');
}
valid = YES;
}

clse

110

{

row = §8;

col = 40;

for (i=0;i<10:i++)
{

gotoxy(col+irow);

(L] ll)_

printf(:
}

COMPUTER PROGRAMMSIN 'C’

COMPUTER PROGRAMMS IN °'C’ - 111

OUTPUT:

TO SOLVE AN ASSIGNMENT PROBLEM BY THE HUNGARIAN
METHOD

f\AAA/\AAAAAAAAAAAAAAAI\AAAAAAAAAAAAAAAAAJ\AAAAAAAAAAAAAAA

Is the assignment problem a

A> Maximization problem
I> Minimization problem

(Press 'a' for a maximization problem

and 'i' for a minimization one) 1Gf) <
Number of jobs (rows): 4 ol
Number of machines (columns) : 4 Tt
MACHINES

1.2 3 4
1 {8 |26 |17 11

2 Ti3 (4 26
3 [38 19 [18 [15

JOBS

19 {26 |24 10

press any key to continue o

112 COMPUTER PROGRAMMS IN ‘C’

MACHINES

MACHINES
1 2 3 4
1 [0 [14]9 3
2 9120 [0 |22
. 3 |23 (0 |3 0
"JOBS

9 [12 {14 o

4

Press any Key to continue.... «

Solution

The assignment can be done as follows.
job 1 can be assigned to machine 1.
job 2 can be assigned to machine 3.
job 3 can be assigned to machine 2.
job 4 can be assigned to machine 4.

The minimal cost of the entire operation is estimated as 41,

Do you want to continue with another problem ? {y/n|

COMPUTER PROGRAMMS IN ‘C’ 113

SPECIAL NOTE ABOUT THE ASSIGNMENT PROGRAM

This Program is free from all the errors. and can be easily execute in the computer.

We are using modular approach in this program.
This program contains maximum seven (7) rows and maximurn (7) columns.

When you put the values in table according to problem, you should press the ENTER key for substituting
the values row by row. :

This program is applicable for both the minimization or maximization and balaned or unbalanced
problems,

Travelling —-salesman problem (routing) problem cannot be solve by this program. but later, in the next
edition, we will provide travelling salesman problem program because this is also important of
assignment problem.

Your suggestions or comments are very necessary for modifying this Program.

—AUTHOR

114

COMPUTER PROGRAMMS IN ‘/C’

INVENTORY CONTROL C PROGRAMS

Inventory is nothing but the stock of goods, commodities or other resources that are stored for future use.
Inventory is an important part of Organisation engaged in the production of goods & services.

Main Objective of Inventory Control is to find the order quantity which is most economical from the point
of view operation.

.. Whole description of inventory control is given in out book.

I have used Costs in these programs with symbols are
(1) Ordering cost Co
(2) Carrying Cost Cc
(3) Setup cost Cs
(4) Shortage Cost Cs 5.
(5) Unit cost Cu

I'am giving you four inventory models program which are free from all the errors and easily execute in the

compulters.

Similarly on the basis of thesc programs you can solve any type of inventory control probiems with the
help of C language.

In inventory problems, you realized annual demand is given in most of the questions are given in per week
ur per month or per day. You should cahnge annual demand in per vear.

If demand is given for week suppose it is x
Annual Demand D = x * 52 = 52 x per year (1 year =52 weeks)
If demand is given for month suppose it is x
Annual Demand D=x*12=12 x per year (1 year = 12 months)
1f demand is given for day suppose itis x
Annuai Demand D = x * 365 = 365 x per year (1 year= 365 days)
I have made 4 Inventory models C Programs on the basis of four examples. these are given below :
Example I (Program-1)
A Stockist has to supply 500 units of a product to his customers . he gets the product at Rs. 50 per unit from
the manufacture. The cost of ordering and transportation from the manufacture is Rs. 75 per order. the cost
of carrying inventory is 7.5%. per year of the cost of the product.
(1) what is the economic lot size EOQ ?

(2) How long would it take to produce economic lot size 7
(3) What is the total optimum cost per week ?

COMPUTER PROGRAMMS IN ‘C’ 115

Read this problem and put all the values in program —| and for entering the values you should press the
ENTER key.

Example 2 (Program-2)

Dr Reddy’s laboratories requires 1000 units of a particular drug additives per month; the average demand
occurs at the rate of 30 units per day. The production process is capable of producing 50 units per day,
Each item produced in the laboratory cost rupees 10. the set up cost per order is Rs. 100/-, The inventory
carrying cost is 15% of the average inventory cost. Calculate

(1) the quantity to be produced in each production run

(2) no of production runs per year

(3) time interval between each production run

{(4) total annual cost in cluding cost of drug

Read this problem and put all the values in program —2 and for entering the values you should press the
ENTER key.

Example 3 (Program-3)

A Company is to be supplied at a constant rate of 200 units per day and production rate/day is 400 units.
the supplies of any amount can be head at any required time but each ordering cost is Rs. 10/-. The cost of
holding the commodity in the inventory is Rs. 2/- per unit/day while the delay in the supply of the items
induces a penalty of Rs. 10/- unit/day. Find the optimum policy (Q,T) Where Q is the inventory level after
reorder. '

Read this problem and put all the values in program —3 and for entering the values you should press the

ENTER key. ’
Example 4 (Program-4)

The annual demand for a product is 5400 units. Ordering Cost is Rs. 600/- per order.
Inventory carrying cost is 30% of the purchase cost per unit per year. The price breaks are given below

Quantity - Price/unit (Rs.)
O<=Q <= 2400 12
2400 <=Q <=3000 10
Q>=13000 08

In this program I have taken quantity Q1,Q2, Q3 according table which is shown below :
Ql <=Q<=Q2

Q2 <=Q<=Q3
Q>=Q3

Similarly you can find more resulis with the _help of this program when you substitute any value.

116 COMPUTER PROGRAMMS IN ‘C’

INVENTORY CONTROL

PROGRAM-1 PROGRAM WITH UNIFORM RATE OF DEMAND

PROGRAM 2- PRODUCTION MOBDEL

/* TO SOLVE THE PROBLEM OF INVENTORY LEVEL MODEL2
PRODUCTION MODEL*/

#include<stdio.h>.

#include<math.h>

void main()

{

Aoat d1,d2,4,0,P,D,Ce,C0,Cu,i,il,Q,N,t, T, Te, TAC,EPQ;

cirser();

printf("enter the value of given demand per month d1 and daily
demand(consumption)rate d per day \n"');

scanf(" %% &d1,&d2);

D=d1*12;

d=d2; '

printf("" The annual demand D is=%0.2f per year\n"',D);

printf(" daily demand=%0.2f per day\n"d);

printf(" Enter the Production rate P per day according to problem\n');
scanf(" %' ,&P); ' '
printf("Enter the Set up cost Co , Unit cost Cu and rate of interest il (interest
percentage} according to given problem \n");

scanf("" %% %1 ,& Co,& Cu,&il);

i=(i1/100);

Ce=Cu*i;

h=1-(d/P);

EPQ=sqrt((2*D*Co)/(Cc*h});

N=D/EPQ;

t=365/N;

Te=sqrt(2*D*Co*Cc*h);

TAC=Cu*D+Trc;

printf("Sct up Cost (given) Co =%0.2(Rs per order\n” ,Co);

printf(" Unit Cost (given) Cu=%0.2f Rs per unit\n",Cu);
printf("Production rate (given) P=%%0.2f per day\n",P);

printf("' Inventory Carrying Cost Cc=%0.2f Rs/unit/unit time\n'',Cc);
printf(" Rate of interest(given) i=%0.3f per year\n\n™i);
printi(''Economic Production quantity EPQ=%0.2f\n\n",EPQ);
printf("’Number of Production runs per year N=%0.2f\n\n"",N); .
printf(""Number of days between cach production t=%40.2fin\n" t);
printf{" Total Annual inventory cost Tc=Rs %0.2f\n\n"",Tc);

printf(" Total Annual cost including cost material TAC=Rs %0.2\n" , TAC);
getch();

}

COMPUTER PROGRAMMS IN ‘'C” 1
117

QuTPuT

coter the value of given demand for one week d

00

The annual demand D is=26000.00 per year

Enter the Ordering cost Co , Unit cost Cu and rate of interest il (interest perc
catage) according to given problem

75

30

7.5

Ordering Cost (given) Co =75.00 Rs per order

Unit Cost (given) Cu=50.00 Rs per unit

Inventory Carrying Cost Cc=3.75 Rs/unit/unit time
Rate of interest i=0.075 per year

Economic order quantity EQQ=1019.80

Number of orders N=25.50

Number of days between cach order t=14.32

Total inventory cost Te=Rs 3824.26

" Total cost including cost material TAC=Rs 1303824.25

118

COMPUTER PROGRAMMS IN ‘C’

PROGRAM 2-PRODUCTION MODEL

PROGRAM-3 FINITE RATE WITH Si—l()R_Tz_GE

/* TO SOLVE THE PROBLEM OF INVENTORY LEVEL MODELS3 finite rate
with shortage*/

Hinclude<stdio.h>

#include<math.h>

vaoid main{)

{

Aoat d1,d2,d,h,P,1,Ce,CCCu,i,jo kS, 1L, CS,Cs,Q Nt T, Te, EPQ;

clrser(); .

printf("cnter the value of given demand per day d1 and daily demand(consumption
Jrate d per.day \n");

seanf(" %% M, &d1,&d2);

D=d1*365;

d=d2;

printf("" The annual demand D is=%0.2f per year\n",D};

printf("'daily demand=%0.2f per day\n",d);

printf("" Enter the Production rate P per day according to problem\n");
scanf(" %", &P);

printi("Enter the Sct up(ordering) cost Ce , Carrying eost(holding cost) Ce
funit/day and shortage cost(stock out cost) Cs /unit/year according to given problem
\n"); :
seanf(" % f% %" ,& Co,&CC,&CS);

Cs=CS§*365; ‘

Cce=CC*365;

h=1-(d/P);

k=({Cst+Cc)/Cs);

J=(Cs/(Cs+Ce)) 5

EPQ=sqrt((2*D*Co*k)/(Cc*h));

I=sqrt((2*D*Co*j)/(Cc*h));

S=EPQ-I;

N=EPQ/D;

£=365/N;

Te=sqrt(2*D*Co*Cc*h*j);

printf("Set up Cost (given) Co =%0.2f Rs per order\n",Co);
printf("Inventory Carrying Cost Cc=%0.2f Rs/unit/unit year\n",Cc);
printf("Shortage (stock out cost) cost Cs=%0.2f Rs/unit/yearin\n"",Cs);
printf("Economic Production quantity EPQ=%f\n\n",EPQ);
printf("Maximum Inventory level 1 =%0.2fAn""I);

printf(""Production Period{ Manufacturing Time) per year N=%f\n\n"",N}):
printf("Number of shortages=%0.2f\n",$);

printf("Number of days between each production t=%.2f\n\n"" ,t);
printf('" Total Optimal Annual inventory cost Te=Rs %0.2f\n\n"", T¢c);
getch();

'

COMPUTER PROGRAMMSIIN ‘C’
119

OUTPUT

enter the value of given demand per month d1 and daily demand(consumption rate
d per day

1000

30

The annual demand D is=12000.00 per year '

daily demand=30.00 per day :
. Enter the Production rate P per day according to problem

50

Enter the Set up cost Co, Unit cost Cu and rate of interest il (interest percen
tage) according to given problem

100

10

15

Set up Cost (given) Co =100.00 Rs per order

Unit Cost (given) Cu=10.00 Rs per unit

Production rate (given) P=50.00 per day .
Inventory Carrying Cost Cc=1.50 Rs/unit/unit time
Rate of interest{given} i=0.150 per year

Economic Production quantity EPQ=2000.00
Number of Production runs per year N=6.00
Number of days between each production t=60.83
Total Annual inventory cost Te=Rs 1200.00

| Total Annual cost including cost material TAC=Rs 121200.00

COMPUTER PROGRAMMS IN ‘C’

PROGRAM-3 FINITE RATE WITH SHORTAGE

PROGRAM-3 FINITE RATE WITH SHORTAGE

/* TO SOLVE THE PROBLEM OF INVENTORY LEVEL MODELS3 finite rate
with shortage*/

#Hinclude<stdio.h>

#include<math.h>

void main()

{

float dl,dz,d,h,P,D,Cc,CC,Co,i,i,k,S,I,CS,Cs,Q,N LT, Te, EPQ;

'clrscr(); :
printf("enter the value of given demand per day d1 and daily demand(consumption
Jrate d per day \n"");

scanf(" %f%f" &d1,&d2);

D=d1*365;

d=d2;

printf(" The annual demand D is=%0.2f per year\n",D);

printf(" daily demand=%0.2f per day\n" d);

printf(" Enter the Production rate P per day according to problem\n");
scanf(" %", &P); i : :

. printf("Enter the Set up(ordering) cost Co , Carrying cost(holding cost) Ce
/unit/day and shortage cost(stock out cost) Cs /unit/year according to given problem
\n"); : :

scanf(" %f%f%f",&Co,&CC,&CS);

Cs=CS*365;

Ce=CC*365;

h=1-(d/P);

k=((Cs+Cc)/Cs);

J=(Cs/(Cs+Cc)) ;

EPQ=sqrt((2*D*Co*k)/(Cc*h));

F=sqre((2*D*Co*j)/(Ce*h));

S=EPQ-I;

N=EPQ/D;

1=365/N;

Te=sqrt(2*D*Co*Cc*h*j);

printf("Set up Cost (given) Co =%0.2f Rs per order\n",Co);

printf("' Inventory Carrying Cost Cc=%0.2f Rs/unit/unit yearin",Cc);
printf{"'Shortage (stock out cost) cost Cs=%0.2f Rs/unit/year\n\n",Cs);
printf("Economic Production quantity EPQ=%f\n\n"",EPQ);
printf("Maximum Inventory level I =%0.2fn" 1); .
print{{("Production Period(Manufacturing Time) per year N=%fin\n"",N});
printf(" Number of shortages=%0.2f\n",S); ‘
printf("Number of days between each production t=%0.2f\n\n"t); -
printf(" Total Optimal Annual inventory cost Te=Rs %0.2f\n\n",Tc);
getch();

}

COMPUTER PROGRAMMS IN 'C’ 121

QUTPUT:

enter the value of given demand per day dI and daily demand(consumption Jrate d
per day

200

200

The annual demand D is=73000.00 per year

daily demand=200.00 per day

Enter the Production rate P per day according to problem

400

Enter the Set up(ordering) cost Co , Carrying cost(holding cost) Cc /unit/day an
d shortage cost(stock out cost) Cs /unit/year according to given problem
50 :

2

10
Set up Cost (given) Co =50.00 Rs per order

Inventory Carrying Cost Cc=730.00 Rs/unit/unit year

Shortage (stock out cost) cost Cs=3650.00 Rs/unit/year '

Economic Production quantity EPQ=154.919342

Maximum Inventory level I =129.10
Production Period(Manufacturing Time) per year N=0.002122

Number of shortages=25.82 _
Number of days between each production t=171992.72

Total Optimal Annual inventory cost Te=Rs 47121.30

122

COMPUTER PROGRAMMS IN ‘C’

PROGRAM-4 INVENTORY DISCOUNT MQODEL

PROGRAM 4- INVEN’I;ORY DISCOUNT MODEL

/* To solve the Enventory Discount Model Problem*/
#include<stdio.h> ’ :

#include<math. h>

void main()

{ .

float D,Cul,Cul Cud,Co,01,02,Q03,100,E00Q1,E0Q2,F0Q3;

float H1,K1,H2 K2, HIK3,Q11, TAC,TACI, TAC2,TAC3,i,il;

clrser();)

printf("Enter the value of annual demand D per year and Ordering Cost Co \n and
inventory carrying cost percentage i\n");

scanf("' %f% % ,&D,&Co,&i);

print{("" Enter the value of Unit costs Cul,Cu2,Cu3 in Rs \n"");

. seanf(" %% %", & Cul,&Cu2,&Cul);

printf("" Enter the value of Quantities Q1,Q2 AND Q3\n");
scanf(" % %1% ,&Q1,&£Q2,&Q3);

printf(" QUANTITY PRICE/UNIT (Rs) \n");

printf(" %0.2f <= Q <= %0.2f, Cul=%0.2f Rs\n",Q1,Q2,Cul);
 printf(" %0.2f <= Q <= %0.2f, Cu2=%0.2f Rs\n",Q2,Q3,Cu2);

printf(" Q >= %0.2f, Cu3=%0.2f Rs\n",Q3,Cu3);

i1=i/100;

printf("il=%fn",il);

EOQL=sqrt((2*D*Co)}(Cul *il)};

EOQ2=sqrt({(2*D*Co)/(Cu2*il));

FOQ3=sqrt((2*D*Co)/(Cu3*il));

printf("Economic Order Quantity EQQ1=460.2in" ,EOQ1);
printf("Economic Order ()u:mti!y E0Q2=%0.2f\n",E0Q2);
printf(""Economic Order Quantity EQQ3=%0.2f\n",EOQ3);

f{ EOQ2 < EOQ1 && EQQ2 < E0QQ3)

{

printf(" EOQ?2 is the smallcst value which represents the best quantity in that
volume range=%f\n",E0Q2);

printf(" Determinc quantity to be purchased at each price level are\n");
printf(" EOQ2=%0.2f\n" ,E0Q2); '
Q11=E0Q2;

printf(* Selccted Quantity Q11=%0.20\n",Q11);

printf(" Selected Quantity Q2=2%0.2fn",Q2);

printf("" Selected Quantity Q3=%0.2An",Q3);

H1=D/Q11;

KI1=0Q11/2;

TACI=((Cul *DH(H1*Ca)+(K1*Cul*il));

H2=D/(2; .

K2=Q2/2;

TAC2=((Cu2*D)+H(H2*Co)+{K2*Cu2*il));

H3=D/(Q3;

COMPUTER PROGRAMMS IN ' 123

K3=Q3/2;

TAC3—((Cu3*D)+{H3*Co)+(K3*Cu3*|l)),

printf("* Total annual cost including materials for all selected quantities
TAC(Q1)=%0.3f Rs \n", TAC1);

printf(" Total annual cost including materials for all selected quantities
TAC(Q2)=%0.3f Rs \n",TAC2);

printf("’ Total annual cost including materials for all selected quantities
TAC(Q3)=%0.3f Rs \n", TAC3);

}
else if (EOQ1 < EOQ2 && EOQ1 < E0Q3)

{ :
printf("" EOQI is the smallest value which represents the best guantity in that
volume range—%f\n" EOQQ1);
printf(" Determine quantity to be purchased at each price level are\n"),
printf("" EOQ1=%%0.2f\n",E0Q1);
Q11=E0Q1;
printf(" Selected Quantity Q11=%0.2fn",Q11);
printf("Selected Quantity Q2=%0.2\n",Q2);
printf(" Selected Quantity Q3"%0 2f\n",Q3);
H1=D/Q11;

K1=Q11/2;
TAC1=((Cul*D}+(H1*Co)HK1*Cul*il});
H2=D/Q2;
K2=Q2/2;
TAC2=({Cu2*D)+(H2*Co)t(K2*Cu2*il));
H3=D/Q3;

K3=Q3/2;
TAC3—((Cu3*D)+(H3*Co}+(K3*Cu3*|1)),
printf("* Total annual cost including materials for all selected quantities
TAC(Q1)=%0.3f Rs\n", TAC1);
printf(’’ Total annual cost including materials for all selected quantmes
TAC(Q2)=%%0.3f Rs\n" , TAC2);
printf(" Total annual cost including materials for all selected quantities
TAC(Q3)=%0.3f Rs\n",TAC3);
) :

else

printf(" EOQ3 is the smallest value which represents the best quantity in that
volume range =%fin",E0Q3);

printf(" Determine quantity to be purchased at each price level arein™);
printf(" E0Q3="%0.2f\n",EOQ3);

Q11=E0Q3;

printf(""Selected Quantity Q11=%0. 2f\n",Q11);

print{("'Selected Quantity Q2=%0.2f\n",Q2);

printf("Selected Quantity Q3=" ©0.20n",Q3);

H1=D/Q11:

124

COMPUTER PROGRAMMS IN ‘C”

K1=Q11/2;

TACI=((Cul *Dy+HH T Co)+(K1*Cul*il))

H2=D/Q2;

K2=Q2/2;

TAC2=((Cu2*D)+(H2*Co)HK2*Cu2*il));

H3=D/Q3;

K3=Q3/2;

TACI=((Cud*D)HHI*Co)+KI*Cud*il});

printf(" Total annual cost including materials for all selected quantities
TAC(Q1)=%0.3f Rs\n", TAC1); : :

printf(" Total annual cost including materials for all selected quantities
TAC(Q2)=%0.3f Rs\n" , TAC2);

printf(" Total annual cost including materials for all selected quantities
TAC(Q3)=%0.3f Rs\n", TAC3);

} .

if{ TAC2 < TAC1 && TAC2 < TAC3)

{ ' 3

printf("" The Optimal lowest annual cost TAC2 =%0.2f Rs\n"', TAC2);
}

else if (TAC1 < TAC2 && TAC1 < TAC3)

{
printf(" The Optimal lowest annual cost TAC1 =%0.2f Rs\n", TACL);
}

else

{ ‘ ‘

printf(" The Optimal lowest annual cost TAC3 =%0.2f Rs\n", TAC3);
}.

getch();

}

COMPUTER PROGRAMMS IN ‘C’ 125

OUTPUT:

Enter the value of annual demand D per year and Ordering Cost Co
and inventory carrying cost percentage i

5400

600

30

Enter the value of Unit costs Cul,Cu2,Cu3 in Rs

12

10

8

Enter the value of Quantities Q1,Q2 AND Q3

0

2400

3000 _

QUANTITY PRICE/UNIT (Rs)
0.00 <= Q<= 2400.00, Cul=12.00 Rs
2400.00 <= Q <= 3000.00, Cu2=10.00 Rs
Q >= 3000.00, Cu3=8.00 Rs
i1=0.300000

Economic Order Quantity EOQ1=1341.64

Economic Order Quantity EOQ2=1469.69

Econemic Order Quantity EOQ3=1643.17

EOQL1 is the smallest value which represents the best quantity in that velume ra
nge=1341.640747 :
Determine quantity to be purchased at each price level are

EOQ1=1341.64

Selected Quantity Q11=1341.64

Selected Quantity Q2=2400.00

Selected Quantity Q3=3000.00

Tota! annual cost including materials for all selected quantities TAC(Q1)=69629
906 Rs

Total annual cost including materials for all selected quantities TAC(Q2)=58950
.000 Rs ' '

Total annual ¢ost including materials for all selected quantities TAC(Q3)=47880
000 Rs

The Optimal lowest annual cost TAC3 =47880.00 Rs

126

COMPUTER PROGRAMMS IN ‘'C’

QUEUEING THEORY in “C”

QUEUEING THEORY includes
(1) Input (arrival pattern)
{2) The Service mechanism (service pattern)
(3} Queue Discipline
(4) Customer’s behaviour

The whole description of queueing theory is given in our book.
Here we are giving a two C-programs which include the properties of MODEL-I, FCFS.

In First program, you should put the values of arrival rate and service rate in minutes. And then these
values will convert mean arrival and service rate in per minute. You can know about the many properties
of first come first serve model. '

In second program, you enter the values of mean arrival rate and service rate in per hour directly and then
you find the properties of first model. '

Similarly you can make many programs of queueing theory models. In the next edition of the book, we
will provide other programs.

Your suggestions or comments is very necessary for modifying this Program,

—AUTHOR

COMPUTER PROGRAMMS IN ‘C’ 127

PROGRAM-1

PROGRAM-1
/* To find the properties of Queucing theory (MODEL-1 (M|M}1):(...|FCFS))*/

#include<stdio.h>
#include<math.h>

-void main()

{ -
float al,ul,a,u,p,Ls,Lq,Wq,Ws, WW,LL,h.k,QL,P,N,L,P1,P2:
clrser();

‘printf{("' QUEUEING THEORY \n"});

printf{" Queuveing theory problems depends on arrival rate and service rate
values\n");

printf(*'Both the value of arrival & service rate u should be in per unit time (seconds
;minutes or hours)in");

printf("For example,if arrival rate and service rate value is given in minutes,we
should convert the value in per minute\n"); '

print{("'If one of or both the values of arrival rate and service rate is given in hours
or days,we should convert both the values in per hour or per day\n\n");
printf("Enter the value of arrival rate al and service rate ul in minutes\n");
scanf(" % %M, &al &ul),

a=1/al;

u=1/ul;

printf("Mean arrival rate (a=1/al per minute) a =%f\n",a);

printf(""Mean service rate (u=1/ul per minute} u =%fin",u);

p=alu;

Ls=p/(1-p);

Lg=Ls-p;

Wa=p/(u*(1-p)};

Ws=1/(u*(i-p));

WW=1/(u*(1-p));

LL=1/(1-p);

h=pow(p.2);

QL=p/(1-h);

P1=1-p;

P2=1-(1-p);

printf{"Traffic intensity (or utilization facter) for service facility p=%f\n\n",p);
printf("Expected no of customers in the system or expected linc length Ls=%0.2f
customers\n'’,Ls); .

prinif(""Expected No of customers in Queue or expected queue length Lq=%0.2f
customersin”,Lq);

printf("Expected waiting time per customer in the Queue { excluding service time)\n
Wq=%0.2f minutes\n' ,Wq);

printf("'Expected waiting time per customer in the system(mcludmg service time)\n
Ws=%0.2f minutes\n"',Ws);

128 COMPUTER PROGRAMMS IN ‘'C’

printf(""Expected waiting time of a customer who has to wait,(W|W > ()=

s :10.2‘\[1",WW); .

printf(" Expected length of Non empty Queue ,(LiL > 6)="%0.2f\in",LL);
printf("’Qucue length is QL=%fn",QL);

printf(’the proportion of time, the server is idle P1I=%An",I"1);

printf("" the proportion of time ,the server is busy P2=%f\n",P2);

printf("To find the probability for Queue size , enter the value of Queuc size N (like
1,23 4......... na"y; :

scanf(" % &N);

k=pow(p,N);

P=k;

printf(" The probability when quecue size is exceeding in the system Prob{ queue size
>= %0.2f] =%0.3An" ,N,P);

getch();

i

OUTPUT:

QUEUEING THEORY
Queucing theory problems depends on arrival rate and service rate values
Both the value of arrival & service rate u should be in per unit time (seconds ,
minutes or hours)
For example,if arrival rate and service rate value is glven in minutes,we should
convert the value in per minute
If one of or both the values of arrival rate and service rate is given in hours
or days,we should convert both the values in per hour or per day

Enter the value of arrival rate a! and service rate ul in minutes
48
36

Mean arrival rate (a=1/al per minute) a =0.020833
Mean service rate (u=1/u1 per minute) u =0.027778
Traffic intensity (or utilization factor) for service facility p=0.750000

Expected no of customers in the system or expected line length Ls=3.00 customers

Expected No of customers in Queue or expected queue length Lq=2.25 customers
Expected waiting time per customer in the Queue { excluding service time)
Wq=108.00 minutes

Expected waiting time per customer in the system(including service time)
Ws=144.00 minutes

Expected waiting time of a customer who has to wait,(W|W > 0)= 144.00
Expected length of Non empty Queue ,(LiL > 0)=4.00

Qucuc length is QL=1.714286

the proportion of time, the server is idle P1=0.250(00

COMPUTER PROGRAMMS IN ‘C’ 129

the proportion of time ,the server is busy P2=0.750000
To find the probability for Queue size , enter the value of Queuc size N (like 1

10
The probability when queue size is exceeding in the system Prob[queue size >=
10.00] =0.056

130 ' COMPUTER PROGRAMMS IN ‘'C’

PROGRAM-2
Program-2

/* To find the properties of Queucing theory (MODEL-1 (M{M|1):(...[FCFS))*/
#include<stdio.h>
#include<math.h>
void main(}
{
float al,ul,a,u,p,Ls,Lq,Wq,Ws,WW ,LL hk,QL,P,N,L,P1,P2;
clrser();
printf(" QUEUEING THEORY \n");
printf(" Queueing theory problems depends on arrival rate and service rate
values\n"); ‘

printf(" Both the value of arrival a & service rate u should be in per unit time
(seconds ,minutes or hours)\n");
printf("'For example,if arrival rate and service rate value is given in minutes,we
should convert the value in per minute\n");
printf("'If one of or both the valués of arrival rate and service rate is given in hours
or days,we should convert hoth the values in per hour or per day\n\n");
printf("Enter the value of mean arrival rate a and service rate u in per hour\n");
scanf(" % f%f",&n,&u);
p=a/u;
Ls=p/(1-p);
Lq=Ls-p;
Wq=p/(u*(1-p));
Ws=1/(u*(1-p));

=1/(u*(1-p));
LL=1/(1-p);
h=pow(p,2);
QL=p/(1-h);
Pl=1.p;
P2=1-(1-p); .
printf("Traffic intensity (or utilization factor) for service facility p=%fin\n",p):
printR{"Expected no of customers in the system or expected line length Ls=%0.2f
customers\n",Ls); ‘
printf(""Expected No of customers in Queue or expected queue length Lq=%0.2f
customers\n”,Lq);
printf("Expected waiting time per customer in the Queue (excluding service time)\n
Wq=%0.2f hr\n"" ,Wq);
printf("Expected waiting time per customer in the system(including service time)n
We=%0.2f hrin",Ws);
printf(""Expected waiting time of a customer who has to wait,(W|W > 0)=
%0.2fn",WW);
printf("Expected length of Non empty Queue ,(L|L > 0)=%0.2f\n",LL);
printf(" Queue length is QL=%f\n",QL);
printf("'the proportion of time, the server is idle P1=%f\n",P1);

131

COMPUTER PROGRAMMS IN'C’

Tww

printf{("’ the proportion of time ,the server is busy P2=%f\n",P2);
printf("" To find the probability for Queue size , enter the value of Queue size N (like

scanf(" % f",&N);

k=pow(p,N);

P=k; ’

printf(" The probability when queue size is exceeding in the system Prob[queue size
»>= %0.2f] =%0.3fn",N,P);

getch();

}

OUTPUT:

QUEUEING THEORY
Queueing theory problenys depends on arrival rate and service rate values
Both the valugrof arriva) a & service rate u should be in per unit {ime (seconds
,minutes or hours)
For example,if arrival rate and service rate value is given in minutes,we should
convert the value in per minute
If one of or both the values of arrival rate and service rate is given in hours
or days,we should convert both the values in per hour or per day

Enter the value of mean arrival rate a and service rate y in per hour
8 w -

12
Traffic intensity (or utilization factor) for service facility p=0.666667
Expected no of customers in the system or expected line length Ls=2.00 customers

Expected No of customers in Queue or expected queue length L.q=1.33 customers
Expected waiting time per customer in the Queue (excluding service time)
Wq=0.17 br

Expected waiting time per customer in the system(including service time)
Ws=0.25 br '
Expected waiting time of a customer who has to wait,(W|W > 0)= (.25
Expected length of Non empty Queue ,{ L|L > 0)=3.00

Queue length is QL=1.200000

the proportion of time, the server is idle P1=0.333333

the proportion of time ,the server is busy P2=0.666667

To find the probability for Queue size , enter the value of Queue size N (like 1

The probability when queue size is exceeding in the system Prob| queue size >=2
00] =0.444

APPENDIX - A

A New Metsop For InmaL Sorumion OF
TRANSPORTATION PROBLEM

A-1 MATHEMATICAL FORMULATION OF T.P.

There are several methods for finding the initial basic feasible solution of Transportation Problem (T.P.) as
discussed in Chapter 13. But, there is no suitable answer to the question : which method is the beast one 7 In
this article, we have developed a new technique for finding the nearly optimal solution which requires less
iterations to reach optimality in comparison to the methods available in the literature. The degeneracy
problem is also avoided by this method. This method is better than Vogel’s Approximation Method also, and is
based on the min-max (max-min) criteria of ‘Game Theory’

Mathematical formulation of Transportation Problem has been given in Chapter 10.

A-2 MIN(MIN-MAX) ALGORITHM*

Step 1. Choose the maximum cost {cpcelli=1,...m; j=1, ..., n). In case of ties, choose the maximum
arbitrarily.
Step 2. (i) Choose the minimum cost cell in the row containing the maximum (c;)-
(i) Allocate the maximum possible quantity to the minimum cost cell.
(iif) Find the total cost of this allocation.
Step 3. RepeatStep 2 for the column cell containing the maximum (cy)-
Step4. Choose for allocation the cell with minimum cost. In case of a tie choose arbitrarily.

Step 5. Delete the row (column) when the allocation becomes complete. In case of a tie delete either row or
column. If the row and column both deserve to be deleted, put zero in the minimum cost cell of either

row of column which are not yet deleted.

Mustrative Example

Example : Consider the problem:
19 30 50 10
70 30 40 60 g
40 3 70 20 |18
5 8 7 14

Proceeding step-by-step according to the algorithm suggested above, we get the following solution :
19 5 30 50 - 0 2 7
70 30 0 7 60 2 9
40 g 8 70 20 10 |18
5 8 7 14

The initial cost = 779 units.

“This method was developed by the author in 1989 when he was working on deputation as Professor of Oparations
Research in the University of Salahaddin, Arbil, lraq. On this article the author was awarded by the *Ministry of Higher Education
and Scientific Research (Iraq).

2 OPERATIONS RESEARCH AND ENGINEERING MANAGEMENT

However, if we find the initial solution of this problem by Vagel’s Method we reach the same solution.

But this new approach requires less computations as well as the total number of basic cells are always
m+ n — 1, thus avoiding the problem of degeneracy.

A3 MAX (MIN-MAX) ALGORITHM

Step 1. Choose the max (eyeell (i=1,..,m;j=1,.., n). Incase of ties, choose the maximum arbitrarily.
Step 2. () Choose the minimum cost cellin the now containing the maximum (cy)

(éi) Allocate the maximum possible quantity to the minimum cost cell.

(iify Find the total cost of this allocation. .

Step 3. Repeat Step 2 for the column cell containing the maximum (ey).

Step4. Choose for allocation the cell with maximum total cost. In case of atie choose arbitrarily,

Step 5. Delete the row (column) when the allocation becomes complete. In case of tie delete either row or
column. If the row and column both deserve do be delete, put zero in the minimum cost cell which
are not yet deleted. :

Step6. When all m+n— 1 cells are allocated, stop . Otherwise, go to Step 1.

A-4 VERIFICATION BY EXAMPLE

Following example verifies that the initial solution becomes optimal when
max (min — max) = min (min - max).
Conisder the following initial BFS obtained by both the above algorithms :

4 2 1 3 4 2
5 6 5
6 1 5. !
2 9 5
Max Min Max
6 Row Ix85=5
Column 4x2=8* a,;, Omit column 1
5 Row 2x6=12* 33, Omit Row 2
Column 1x5=5
3 Row I1x2=2
Column I'x 3% a3, Omit Row 1
Note: To avoid degeneracy we allocate emptly (zero) to tha cell az; and we amit column 2.
1 Row and Column 1 x2=2

which is the last cell solution. Total costis 30 and this solution satisfies the test of optimality.

A-5 CONCLUDING REMARK

The algorithm developed in this article has the following major advantages

() It requifes less computations in comparison to the methods existing in the literature.

{(if) The problem of degeneracy willnot arise in the initial BFS.

(iif) The algorithm has the interesting property : max (min - max) = min (min - max) = optimum solution.

LL

